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1.  INTRODUCTION

Aircraft gas-turbine engine data is available from a variety of sources, including on-board sensor 
measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management 
(PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to 
obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data fusion is the 
integration of data or information from multiple sources for the achievement of improved accuracy and more 
specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/
information fusion concept is to leverage all available information to enhance diagnostic visibility, increase 
diagnostic reliability and reduce the number of diagnostic false alarms. This report describes a basic PHM data 
fusion architecture being developed in alignment with the NASA C-17 PHM Flight Test program. The challenge of 
how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic 
and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To 
address this challenge, NASA Glenn Research Center (GRC), NASA Dryden Flight Research Center (DFRC) and 
Pratt & Whitney (P&W) have formed a team with several small innovative technology companies to plan and 
conduct a research project in the area of data fusion, as it applies to PHM. Methodologies being developed and 
evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, 
statistical estimation, and fuzzy logic. This report will provide a chronology and summary of the work 
accomplished under this research contract.
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2.  BACKGROUND

2.1 CHRONOLOGY

Figure 1 provides a summary timeline for the development of the data fusion architecture and attendant 
analytical modules and support activities.

This program was envisioned as an adjunct activity to a C17-T1 PHM program that had been awarded to P&W 
by NASA DFRC. One of the objectives of the PHM program was to flight test and evaluate several advanced 
sensors. This included the Stewart Hughes electrostatic inlet debris monitoring system (IDMS) and the exhaust 
debris monitoring system (EDMS), the SWANtech stress wave sensor, and several high frequency vibration 
sensors. This was in addition to an extended suite of gaspath, oil system, and airframe sensors. An oil debris 
monitoring system (ODM) was also planned, but was not installed during the Data Fusion program period.

In 2001, the C17-T1 PHM team was installing the advanced sensors and determining the entire suite of sensors 
that would be monitored, recorded, and archived for subsequent analysis. This planned repository of data would 
provide the requisite data for the fusion effort. Since the recording equipment and sensors would not be ready 
before 2002, this data would not be available until 1st Quarter 2002 at the earliest. For this reason, an alternate 
source of data was needed in order to begin the Data Fusion program activities planned for 2001. To this end, P&W 
supplied an F117-D01 transient field deck that could, at least, produce simulated gaspath flight data. At the same 
time, work began to develop an F117 Self-Tuning Onboard Real-time Model (STORM) that would provide a form 
of engine module performance tracking. The STORM system would be driven by the transient field deck that 
would act as the surrogate engine. This same (simulated) data would be used to develop an empirical gaspath 
anomaly detection (AD) system.

Persistent C17-T1 aircraft instrumentation problems, coupled with increased U.S. Air Force usage of the 
vehicle following the events of 11 September 2001, would ultimately limit (severely) the data available for this 
research effort. This forced a reliance on the F117 simulation data, which, in turn, would again limit the 
investigations to the engine gaspath. Figure 1 depicts the relative dates when flight data was recorded. There were 
11 flights in March 2002 and 3 flights in July 2003 where data was available. Unfortunately, there were difficulties 
in recording many of the parameters required for the Data Fusion program study, limiting the data's utility.

The primary accomplishments made within this program, given the constraints and the attendant year-to-year 
changes in scope driven by these constraints, can be summarized as follows:

 

Task 2Q 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q

Program Kickoff
Data Fusion Architecture

Initial
Revised

C17-T1 Data Sets

Models
          F117 Transient Simulation
          F117 STORM

Analysis Modules
Data Alignment Module

Gas Path Anomaly Detector
Oil System Model

eSTORM integration

AD / eSTORM Fusion

2001 2002 2003 2004

Figure 1.  Data Fusion Program Development Timeline
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• Definition of a general PHM-oriented data fusion architecture accommodating an array of sensors 
(structural health, gaspath, oil system, airframe, etc.) at different bandwidths.

• Development of data synchronization logic

• Identification and development of supporting analysis modules

— Gaspath analysis

— Empirical oil system modeling to produce analytical redundancy through virtual sensors (oil quantity, 
No. 4 bearing pressure)

— Gaspath AD

• Preliminary vibration analysis without 1/rev tach signals

• Direct fusion of AD and gaspath analysis algorithms for detection and accommodation of measurement 
biases.

The chronological development of these items can be found in the technical narrative reports dating from 2001 
through 2004. A summary overview of these items will be presented in Section 3. More detailed information can 
be found in the narratives.
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2.2 ARCHITECTURE

The final (generic) architecture for PHM data fusion is presented in Figure 2. A C17-T1 PHM specific 
architecture is depicted in Figure 3.

  

 Structural
Assessment

Sensor 1

Lubrication & Fuel
System Sensor 1

Gas Path
Sensor 1

Vibration
Sensor n2

Vibration
Sensor 1

  Structural
Assessment
Sensor n1

Gas Path
Sensor n3

Lubrication & Fuel
System Sensor n4

FADEC
Faul t Codes

Maintainer/Pilot
Observations

Engine
Maintenance

History

Data Alignment Module

 Structural
Assessment
Sensor Data

Analysis
and

Feature Extraction

Vibration Sensor
Data Analysis

and
Feature Extraction

Analysis  / Models  Module

High Level Diagnostic Feature Information Fusion Module

Fault Isolation Reasoner Module

High Frequency Data Low Frequency Data

Engine Health Assessment

Recommended Maintenance Action

Health Features

Aircraft
Sensors

Health FeaturesHealth Features

Figure 2.  Generic Data Fusion Architecture
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Both Figures 2 and Figure 3 illustrate the separation of high frequency and low frequency data and how they 
are processed. Gaspath, oil system and airframe data are typically low frequency in the 5 to 50 Hz bandwidth 
range, whereas the structural health and vibration monitoring can be in the 2 to 50 kHz range. The high frequency 
information content is preserved by analyzing these data with appropriate algorithms and exporting feature 
information at a low bandwidth (say, 1 to 20 Hz) for subsequent data synchronization with the lower bandwidth 
information in the data alignment module. The (unanalyzed) synchronized gaspath and oil system data is passed to 
an analysis module that provides for a real time assessment of engine module performance changes, oil system 
parameter synthesis, and gaspath AD. The feature information is presented to an information fusion module that 
combines this information to either corroborate or refute fault hypothesis and provide basic engine health 
assessment. This information could be combined with maintainer observations and full authority digital electronic 
control (FADEC) fault codes in a second tier of information fusion to produce the most probable maintenance 
action. It should be noted that the fusion modules were never realized in this program due to the data problems 
alluded to previously. The fusion process had to be downscoped to address only gaspath information that could be 
simulated with modifications to existing programs. This led naturally to fusing the physics-based gaspath analysis 
algorithm with the empirically derived  AD system.  An overview of the processing modules will be given in  
Section 3.
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2.3 ENGINE DATA

The parameter list pertinent to the C17-T1 Data Fusion program is presented in Table 1.

Table 1 provides a listing of the parameters of interest to the Data Fusion program, along with their attendant 
sampling rates. Unfortunately, during the period of 2002 through 2004, only a handful of flights were made where 
data recordings were available. These flights experienced problems with instrumentation, so that the requisite 
information to develop much of the fusion capability was not available. This is summarized below.

 

Date Flight No. Comments

March 2002 658 to 664, 685 Eight flights in total; Air Force Certified Flight Test Instrumentation was inoperative; 
missing T25, P25 gaspath data required a STORM redesign to use the available data for 
analysis; few oil system parameters available; key input parameter BDL 14 missing; no 
vibration or advanced sensor data available.

July 2003 749, 752, 756 Three flights total; Air Force Certified Flight Test Instrumentation was inoperative during 
749 and 752; became available on 756, but T25 data was corrupted; no advanced sensor 
data.

 

Parameter
Sample 

Rate (Hz) Engr. Units Parameter
Sample 

Rate  (Hz) Engr. Units

Mach No. 25 N1 20 % RPM
Pressure Altitude 25 FT N2 20 % RPM
Calibrated Airspeed 25 KNOTS Burner Static Pressure 5 PSIA
True Airspeed 25 KNOTS High Pressure Compressor Exit Total Temperature 5 Deg C
Indicated Airspeed 25 KNOTS EGT Total Temperature 20 Deg C
Angle of Attack, (a) 50 DEG Engine Inlet Total Temperature 5 Deg C
Alpha Dot, (AOA Rate) 6 DPS Engine Inlet Total Pressure 5 PSIA
Roll Angle 50 FPS Low Pressure Turbine Exit Total Pressure 5 PSIA
Pitch Angle 50 FPS Fuel Flow 5 PPH
Heading Angle 50 DEG Low Pressure Compressor Exit Total Temperature 20 Deg  C
Roll Rate 50 DPS Low Pressure Compressor Exit Total Pressure 20 PSIA
Pitch Rate 50 DPS
Yaw Rate 50 DPS Stewart Hughes IDMS Sensor # 1 12.5K VDC
Flight Path Angle 50 DEG Stewart Hughes IDMS Sensor #2 12.5K VDC
Altitude Rate 25 FPM Stewart Hughes EDMS Sensor 12.5K VDC
Total Temperature 10 Deg C SwanTech Sensor #1 (Inlet Stator) 23.15K VDC
Total Pressure 25 IN HG SwanTech Sensor #2 (E-Flange) 23.15K VDC
Static Temperature 10 Deg C SwanTech Sensor #3 (Gearbox) 23.15K VDC
Static Pressure 25 IN HG SwanTech Sensor #4 (K-Flange) 23.15K VDC

SwanTech Sensor #5 (#5 Bearing Oil Pressure) 23.15K VDC
High Press. Compressor  Variable Vane Position 5 Inches B-Flange High Frequency Acceleration 46.3K g
Station 2.5 Bleed Valve Position 5 % Open B-Flange Low Frequency Acceleration 5.8K g
Thrust Lever Angle 20 Degrees P-Flange High Frequency Acceleration 23.15K g
High Pressure Turbine Clearance Valve Posit ion 5 % Open P-Flange Low Frequency Acceleration 5.8K g
Low Pressure Turbine Clearance Valve Position 5 % Open Gearbox High Frequency Acceleration 46.3K g
Air / Oil Heat Exchanger Valve Position 5 % Open Gearbox Channel 1 (X-axis Acceleration) 23.15K g

Gearbox Channel 2 (Y-axis Acceleration) 23.15K g
Oil Quantity 2.5 Quarts Gearbox Channel 3 (Z-axis Acceleration) 23.15K g
Fuel Temperature at Fuel/Oil Heat Exchanger 5 Deg C
Main Oil Temperature 5 Deg C
Main Oil Differential Pressure 5 PSIG
# 4 Bearing Compartment Exit Pressure 2.5 PSIG
Fuel Pump Exit Pressure 20 PSIA
#1, 2, 3 Bearing Compartment Exit Temperature 20 Deg C

Aircraft

Commands

Oil/Fuel System

Gas Path

Structural Assessment Sensors

Table 1.  C17-T1 Instrumentation for Data Fusion
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As a consequence of the unavailability of essential data, it was decided in late 2003 to abandon the original 
Data Fusion program goal and to proceed with the development of the gaspath performance and anomaly detection 
algorithms with a subsequent fusion between these two subsystems. This system will be described in a subsequent 
section of this report.

2.4 DATA FUSION APPLICABILITY

Early in the program, some effort was expended to determine to what degree data fusion would improve 
diagnostic capability and reliability in a gas turbine application. Much depends on the suite of measurements 
available to fuse and what informational overlap exists between these sources. For the purpose of establishing an 
appropriate generic architecture (as in Figure 2) and investigating fusion possibilities, the following information 
sources were considered.

Engine Gaspath Measurements

These measurements consist of some subset of interstage pressures and temperatures, spool speeds, fuel flow, 
etc. Depending on the engine type, this subset can range from four flight parameters to as many as twelve. In 
addition, measurements such as inlet temperature, pressure, Mach number and altitude define the flight condition 
and aid in the normalization of the main gaspath parameters.

Oil/Fuel System Measurements

These measurements consist of various oil system temperatures, pressures, fuel temperature, and delivery 
pressure. Advanced sensors indicating oil quality, oil debris monitoring sensors, and oil quantity measurements 
may be available.

Vibration Measurements

Some form of vibration monitoring is typically performed on most engines. This monitoring is usually on the 
low spool to measure fan and low-pressure turbine (LPT) vibration, but may include high spool vibration probes, as 
well as specific bearing and gearbox vibration measurements.

Structural Assessment Sensors

These sensors aid in assessing structural integrity of the engine. Examples include inlet debris and exhaust 
debris monitors, acoustic sensors, high bandwidth vibration sensors, multi-axis vibration, and blade tip clearance 
monitors.

FADEC Codes

The electronic engine control performs a myriad of performance tests on signal condition and fidelity. Cross 
channel checks can aid in determining whether or not a main engine sensor is drifting, going out of limit, or failing. 
Checks on bleed valves, active clearance control, and variable geometry can provide independent information 
regarding engine health and the health of various engine subsystems.

Onboard Engine Models

Accurate engine models embedded within the FADEC or residing within a dedicated PHM hardware unit can 
be used to generate virtual engine measurements to aid in detecting faulty engine instrumentation or confirming 
degraded engine performance. STORMs have been developed for this purpose. These models adapt themselves to 
changing conditions observed in the engine's measurement suite, providing virtual sensors that can be used to 
estimate engine module degradation.

Maintenance/Analysis History

Information regarding the performance disposition of the major modules that comprise the engine can 
potentially be used as a priori information to support the identification and estimation of performance changes 
within a Module Performance Analysis (MPA) program. Similarly, knowledge of past maintenance actions and 
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past analysis results may also be used to aid in differentiating between engine component performance faults and 
engine controls and accessories malfunctions, such as bleed leaks, cooling problems, and similar problems.

Companion Engine Data

On multi-engine aircraft, information from the companion engines might be used to provide additional 
independent confirmation of instrumentation problems and engine events. 

Negative Information

This pertains to a reasoning methodology more than an actual source of information. Negative information 
constitutes conditions that were not present, but would, or should, have been perceived under the hypothesis that a 
certain fault scenario exists. In mathematical parlance, it is referred to as proof by contradiction. For example, if 
Active Clearance Control (ACC) was not enabled (i.e., there was a faulty operation) then exhaust gas temperature 
(EGT) should increase. If EGT was not observed to increase, then the original assumption is probably false (i.e., 
ACC must be working properly). This type of information would best be employed in an expert system-like 
structure that governs the overall analysis and processing of the engine data.

With such a wealth of potential information, the manner by which to combine or fuse information for the stated 
diagnostic goal must be decided. In general, data can be fused at different levels, for example: 

• Sensor level fusion where multiple sensors measuring correlated parameters (e.g., oil pressures, exhaust 
gas temperatures, etc.) can be combined

• Feature level fusion, where analysis information resulting from independent analysis methods (e.g., 
component performance changes, event detection) can be combined.

• Decision level fusion, where diagnostic actions (e.g., damage assessments, maintenance advisories) can be 
combined. 

The level of fusion that is appropriate will, in general, depend on many factors, including available sensors, 
models, analysis algorithms, data monitoring and recording specifics (continuous vs. discrete data), and computing 
platform. In the case of engine diagnostics, it can be argued that different levels of information fusion will be 
required depending on whether the system is for a military or a commercial application. In military applications, 
dedicated PHM systems using independent engine monitoring and analysis hardware and/or direct FADEC 
involvement are not uncommon. In these scenarios, data is collected and analyzed in real time, onboard the aircraft 
during flight. In commercial applications, much of the data collected is discrete in nature (several data points per 
flight, typically at takeoff and cruise). This information is downloaded to ground-based computer systems for 
subsequent analysis and trending. In addition, advanced sensors are used more in the military environment (as in 
the C17 T1 program) than in commercial applications, where the historical trend is to minimize sensors and data 
collection hardware.

To provide the most generic and expandable system for a wide variety of engine applications with varied 
instrumentation and data sources, the decision was made to perform the information fusion at the feature level (the 
general architecture depicted in Figure 2). This scheme provides for the potential inclusion of a variety of sensors, 
standard, special, low frequency, and high frequency, as well as other pieces of relevant diagnostic information that 
might be in the form of fault codes, maintenance records, and observations. The general structure provides for 
information synchronization to align the data to a common timeframe, analysis modules for salient feature 
extraction, and high-level fusion. Applying this to the C17-T1 specific measurement suite gives rise to the 
architecture depicted in Figure 3.

Investigating the fusion potential for the C17-T1 measurement suite (assuming all instruments were fully 
operational), it appeared that there was little information overlap relative to common engine fault scenarios. 
Table 2 enumerates the top candidates in order of fusion potential.
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As can be seen in Table 2, a foreign object damage (FOD) event provides the greatest overlap among the 
sensor information available. The oil system is fairly detached from the gaspath system, which, in turn, is fairly 
detached from the structural sensor data. Some form of algorithm fusion that could take advantage of different 
processing methodologies, modeling techniques (empirical vs. physics) is possible. 

The final outcome of this program is predicated on an algorithm fusion between an empirical gaspath anomaly 
detection system and a hybrid (empirical and physics) model-based gaspath analysis methodology that extends the 
functionality of the latter. Before describing this system, we will briefly return to a brief general overview and 
discussion of the fusion process and elements contained within it.

Table 2.  Data Fusion Potential: Information Overlap

Event Measurement System Comment

FOD

Gaspath STORM

IDMS/EDMS Local system fusion

Vibration 
SWAN

May require higher level of event severity

Bleed Leak/Failure

Gaspath STORM

Anomaly detector Empirical modeling

Bleed temperature/pressure Not currently available on C17-T1

Lubrication Leak/Loss
Lubrication system sensors (OTs and OPs) --

SWAN May require higher level of event severity

General Vibration Events Standard vibration, high frequency vibration, 
tri-axial vibration, SWAN

Possible analysis/algorithm fusion

NASA/CR—2005-214055 9



3.  ANALYSIS MODULE OVERVIEW

In a data fusion effort, of equal importance as the data itself is the repertoire of analysis tools required to 
reduce, analyze, and interpret the information collected. For the application at hand, a set of specialized algorithms 
employing both physics-based and empirical methodologies has been employed. These include:

1. Data alignment for synchronizing the raw data/information to a common sample rate for subsequent 
analysis

2. Gaspath anomaly detection that offers an empirical model of nominal gaspath behavior, with quantitative 
metrics for inferring the level of departure from normal when applicable 

3. Gaspath analysis that provides for the isolation, estimation, and tracking of engine module performance 
faults

4. Lubrication system modeling taking the form of empirically derived models for estimating oil quantify and 
bearing pressure. 

A brief synopsis regarding the nature of these algorithms is given below. A detailed description of the theory, 
structure, and implementation of these analytical modules can be found in the quarterly program technical 
narratives and annual program progress presentations.

3.1 DATA ALIGNMENT

As Table 1 indicates, the information being collected on the C17-T1 ranges dramatically in bandwidth from 2.5 
to 50 Hz for the low frequency sensors, and from 5.8 to 46.3 kHz for the high frequency sensors. Referring to the 
system architecture in Figures 2 and 3, the high frequency information will be processed by specialized algorithms 
to capture the salient information content of the signal and distilled to low bandwidth feature information at 
approximately 1 Hz. As a precursor to eventual information fusion, this data, along with the remaining low 
frequency sensor signals, is time synchronized to a common sampling rate. For this application, the data alignment 
frequency is 20 Hz and is accomplished by up and down sampling of the raw signal.

3.2 LUBRICATION SYSTEM MODELING

The original intent of the oil system modeling effort was to provide an empirically derived model of the sensed 
oil system parameters for the purpose of analytical redundancy and fault detection. Because of the instrumentation 
and data collection difficulties alluded to previously, the work in this area has taken the form of empirically derived 
models for estimating oil quantity (POILQ) and No. 4 bearing pressure (PN4SP) from other available engine oil 
system measurements (main oil temperature and pressure), gaspath measurements, and other engine and flight 
parameters (a total of 14 input parameters) (Table 3).
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Initially, artificial neural networks (ANNs) were considered for modeling the lubrication system data; however, 
due to computational burden in training these ANNs, simple linear models were considered. Those models took the 
form:

Equation 1

where y(t) is the target variable at time t,  are the corresponding input variables, and  are the input 
weighting coefficients. There are p variables used as input to the model. The linear modeling problem is to estimate 
the  given training data. It was found that linear models fit the lubrication data as well as the neural net models. 
To further reduce complexity, a model reduction process using a backwards elimination approach was applied to 
identify the optimal subset of input variables for both models (POILQ and PN4SP). This resulted in models with 
seven input variables, albeit, different variables for each model. An example of the response for the oil quantity 
parameter versus the actual measured oil quantity is given in Figure 4.

Table 3.  Input Parameters for Empirical Lubrication Model

Parameter Name Description

ptfuel Fuel temperature at fuel/oil heat exchanger

ptoil Main oil temperature

poilp Main oil differential pressure

pfc Air/oil heat exchanger valve position

ptt2 Engine inlet total temperature

ppt2s Engine inlet total pressure

pacwf Fuel flow

pn1 N1

pn2 N2

mach Mach number

palt2 Pressure altitude (hp)

hdot Altitude rate

alpha Angle of attack

ptrasl Thrust lever angle

)()()()( 2211 tttt ppucucucy +++= K

)(tui ic

ic
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Similar results for No. 4 bearing pressure (PN4SP) appear in Figure 5. In this plot there is a comparison 
between measured PN4SP (blue) and estimates using a one variable model (green) and a six variable multi-layer 
perceptron ANN (red). 

Figure 4.  Measured Versus Predicted Oil Quantity

 
Figure 5.  Measured Versus Predicted PN4SP
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3.3 GASPATH ANOMALY DETECTION

A PHM system generally has provisions for the detection and isolation of known fault conditions. During the 
course of engine operation, however, it is possible to encounter fault conditions or other off-nominal situations that 
were never anticipated, never modeled (or incorrectly modeled), or never encountered in previous engine 
operation. Such events can be referred to as anomalies and it is prudent to provide for the detection of such 
occurrences.

To address unanticipated anomalies, empirical models 
developed from a statistically significant sample of nominal 
engine operation data can be used to form the basis for an 
anomaly detector. These types of models typically take the form 
of ANNs and are trained to output normal engine operation 
measurement estimates. When compared to actual 
measurements, they provide a basis for making a statistical 
determination as to whether or not the observations at hand 
conform to what is considered normal operation. An empirical 
model of the gaspath components was developed for the F117 
engine. The underlying modeling mechanism is a radial basis 
function (RBF) ANN. During the training process for these 
types of ANNs, the training data is self-organized into a group 
of classes. Each class is modeled by an n-dimensional Gaussian 
function, referred to as a radial basis function. These functions capture the statistical properties and dimensional 
interrelationships between the input and output engine data parameters. The structure of an RBF ANN is depicted 
in Figure 6.

The gaspath AD for the F117 is configured as a 
set of several RBF ANNs, each representing a 
particular flight regime or operational characteristic to 
enhance the accuracy of the overall detector. For 
example, there is an RBF ANN for steady state 
operation with and without stability bleed off-take, 
acceleration, and deceleration. Simple regime 
recognition logic controls the selection of the 
appropriate RBF ANN. Preprocessing of engine 
parameters in terms of standard day corrections and 
range normalization are made prior to input into the 
ANN. The primary output of the system is a (fuzzy-
like) detection variable that takes on the values 
between 0 (anomalous data) and 1 (normal data). A 
threshold and median filtering is applied to the output 
to produce a discrete binary parameter to serve as a 
detection flag. A representation of this model is 
depicted in Figure 7.

In addition to the binary AD output parameter, 
individual input parameter distance measures are 
available that quantify each parameter's contribution 
to the data's classification as normal or anomalous. Collectively, these provide an empirical signature for 
anomalous data and are particularly helpful in determining in-range sensor faults. A graphical depiction of the 
output for a segment of an actual C17-T1 flight with a simulated fuel flow bias added (as an anomaly) is given in 
Figure 8.
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Figure 6.  Gaspath Anomaly Detector Model
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The upper chart in Figure 8 portrays the raw output (blue) and the threshold (binary) output (orange) of the AD 
for nominal operation and an implanted (simulated) fuel flow fault. The lower chart is a color-coded graphical 
representation of the individual input parameter distance measures, where blue signifies normal and red signifies 
abnormal. 

3.4 GASPATH ANALYSIS

Traditional gaspath analysis provides for the isolation, estimation, and tracking of engine module performance 
faults. As a three decade-old practice, it has been the subject of considerable research. A variety of methods of 
gaspath analysis have evolved as disparate techniques like optimal estimation, fuzzy logic, ANNs, Bayesian Belief 
Networks, and Kalman filters. The efficacy of any of these methods depends on many factors and is somewhat 
application dependent, although they all share the same characteristic of assessing change in performance relative 
to some reference. In the context of the present application, a modified Kalman filter approach was chosen, with 
the frame of reference being the monitored engine at time of installation.

For the C17-T1, the reference level is obtained through a hybrid engine model. This hybrid model 
representation of the monitored C17-T1 engine consists of a simple real time physics-based state variable engine 
model (SVM) coupled with an empirically determined modeling element. The empirical element takes the form of 
a multi-layer perceptron (MLP) ANN that models the difference between the subject engine (at installation) and the 
SVM. The above elements, in combination with a Kalman filter observer acting on the residuals between the 
hybrid model and the monitored engine, provides the requisite process for performing the gaspath analysis. Thus 
the hybrid gas turbine engine model consists of both physics-based and empirically derived constituents. Physics-
based models would consist of piecewise linear or nonlinear aerodynamic-thermal models of varying complexity; 
SVM is a simple example. In contrast, empirical models are derived solely on the basis of collected data. A typical 
architecture for such a hybrid model that might be used for the purpose of engine performance tracking is depicted 
in Figures 9 and 10. Figure 9 illustrates a typical configuration where an empirical modeling process captures the 
difference between the physics-based engine model and the actual engine being monitored. The engine 
performance estimation process in this architecture will take the form of a Kalman filter observer. This 
configuration (in its most simplistic form) is given in Figure 10.

 

 

TRA
Wf
N1

N2
Pb

T3
EGT

HP CVV

2.5 Bleed
Mach

Simulated 5% bias in fuel 
flow added to real data here

-Detected (detector output = 0)
-Fuel flow flag as off-nominal

Detector Output
1  = Normal
0 = Anomal

Individual Signal Off-Nominal Distance

Raw output

Threshold /
Detector output

TRA
Wf
N1

N2
Pb

T3
EGT

HP CVV

2.5 Bleed
Mach

Simulated 5% bias in fuel 
flow added to real data here

-Detected (detector output = 0)
-Fuel flow flag as off-nominal

Detector Output
1  = Normal
0 = Anomal

Individual Signal Off-Nominal Distance

Raw output

Threshold /
Detector output

Raw output

Threshold /
Detector output

Figure 8.  Graphical Depiction of Gaspath Anomaly Detector Output

NASA/CR—2005-214055 14



The combination of the empirical element and the physics-based model provides a more faithful representation 
for the particular engine being monitored. This provides more meaningful residual information from which an 
engine performance change assessment can be performed, since potential (physics-based) model inaccuracies and 
shortcomings have been effectively removed by virtue of the empirical element. It should be noted that the hybrid 
approach has advantages over a purely empirical model approach, in that the latter tend to require considerably 
more data (to model all of the physics) and tend to be quite large in comparison with the former, which appears to 
be fairly robust and small in size.
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Figure 9.  Building the Empirical Element of the Hybrid Model

 Figure 10.  Implementing the Empirical Element of the Hybrid Model
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In Figures 9 and 10, the output from the Kalman filter observer labeled tuners refers to a vector of module 
performance changes (from installation) that are estimated from the measurement residual input to the Kalman 
filter. These tuners are tracked over time for diagnostic purposes. They are also fed back to the SVM to update the 
model measurement predictions that in closed loop are forced to match the actual engine measurements (on the 
average), driving the residuals to zero. The empirical element (MLP ANN) in the hybrid representation is required 
to mitigate the effects (on the tuners) of model inaccuracies and deficiencies. Figure 11 illustrated this effect on the 
tuners for actual C17-T1 engine data.

Once the reference level is established (zero on the average) for the module performance deltas, only then can 
component deterioration be effectively tracked over time. The marked increase in fault visibility with such an 
approach is illustrated in Figure 12. This hybrid model configuration is referred to as enhanced STORM 
(eSTORM).1
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4.  GASPATH ALGORITHM FUSION

One of the deficiencies in the gaspath analysis approach described in the previous section is its intolerance to 
measurement error. The presence of a measurement bias would cause an attendant deviation in the performance 
tracking tuners in the system's attempt to drive the (offending) measurement residual back to a zero level. In this 
instance, the tuners become a mathematical artifact for accommodating the measurement error. The problem is that 
the assessment erroneously applies the blame of a measurement error to a module performance fault or a 
combination of module performance faults. What is described in this section is a novel approach of combining (or 
fusing) two gaspath algorithms, namely AD and eSTORM in such a way as to extend the features of both 
approaches taken independently. In particular, we extend the gaspath analysis (in eSTORM) to detect and 
accommodate measurement bias without corrupting the module performance tracking (tuners). This fusion 
methodology involves only the gaspath parameters and was possible to model and demonstrate with the use of 
simulated engine data, thereby allowing the fusion work to continue in light of the data acquisition problems 
experienced in the C17-T1 PHM program.

The system we will describe consists of eSTORM, AD, and a high level fusion module using some fuzzy logic, 
with attendant signal processing elements that allowed fault event detection, annunciation, and accommodation. 
The system was designed to address rapid shifts in both performance faults and measurement error (biases). Signal 
processing elements were developed to mitigate the number of false alarms that might be driven by processing and 
signal uncertainties.

The overall strategy that was employed made use of signal processing logic to test for parameter deviation 
persistency to detect and distinguish true deviations from parameter/system noise induced deviations. The heart of 
the persistency logic consisted of tracking eSTORM and AD output parameters by both short- and long-term 
median filters. The divergence between these two types of filters was used to detect the initial onset of a parameter 
trend, as well as its degree of persistency. The persistency logic considered initial large deviations (between short- 
and long-term filtered parameters) followed by a subsequent convergence back to small deviations, which were the 
central indicator that a persistent trend shift had occurred. The quantification of large and small deviations was 
made through the use of fuzzy membership functions. Attendant logic was used to classify a detected trend as 
either a performance fault or a measurement (sensor) fault. A functional block diagram for the overall fusion is 
depicted below in Figure 13. 
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4.1 SHORT- AND LONG-TERM FILTERS

The short- and long-term filters may take many forms. The basic requirement for the filters is that they exhibit 
a measurable difference in response to a step change, as illustrated in Figure 14.

The arithmetic difference (termed divergence) 
between these two filtered signals provides the requisite 
information for determining whether the monitored signal 
has sustained a persistent shift. This is applied on a 
parameter-by-parameter basis for each of the monitored 
engine parameter (residual) signals.

The divergence parameter vectors provide the 
information to assess whether a persistent shift has 
occurred. The process makes use of fuzzy membership 
functions to assess whether or not the divergence is large 
or small. Although these membership functions can take 
many forms, the sigmoid functions depicted in Figure 15
are illustrative of the concept.

To assist in the fault isolation associated with detected 
parameter shifts, a very long filter is maintained for each 
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parameter to establish a reference level from which the transgression was observed. These are calculated in the 
same manner as the long filtered parameters, with appropriate filter constants. 

An example of a nonpersistent trend shift (in a measured parameter) is illustrated in Figure 16, while an 
example of a persistent trend shift by comparison is depicted in Figure 17. 
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The approach taken in the algorithm fusion was to use the AD outputs to indicate that a shift in (at least one) 
measured parameter had taken place. The AD outputs a distance measure for each of the gaspath parameters (see 
previous discussion on AD). A divergence between the short- and long-term filtered values of these metrics would 
give an indication if an excursion has taken place. If the excursion is short-lived (as in Figure 16), no further action 
is taken. If, however, the indicated trend shift endures, (i.e., the excursion is persistent), a delta calculation is 
performed (for each gaspath parameter) between the present (persistent) value and the reference value. This 
provides a vector of gaspath deltas that embodies a signature that describes the underlying fault. At this juncture, a 
variety of isolation procedures are available to identify the fault and assess its relative magnitude. The particular 
isolation procedure used in this application is similar to that described in The Use of Kalman Filter and Neural 
Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study.2

An illustration of the effect of the fused algorithm is depicted in Figure 18.

Figure 18 depicts the example effect on the performance tracking (tuners). The plot begins (at time 0) with a 
nominal engine. Shortly after 100s, a simulated fan fault is introduced and tuners react by tracking the fan 
efficiency excursion. At approximately 250s, a P25 measurement bias is introduced. The tuners react by absorbing 
the measurement bias; the eSTORM system explains away the measurement bias as a combination of module 
performance faults. This is what would happen in a traditional gaspath analysis system (in real time). Since the 
2  A. Volponi, The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative 

Study, ASME 2000-GT-547, IGTI Turbo Expo 2000, Munich; accepted for Transactions of the ASME, Journal of Engineering for 
Gas Turbines and Power.
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system only knows module performance faults, it will interpret all measurement signatures as some combination of 
these faults. Sensor error (bias) faults are typically not included in these real time analysis systems, as the number 
of faults would then exceed the number of measurements. In such a system, the perturbation in the tuners (observed 
after time = 250s) would continue unabated, at least until the measurement bias is removed.

In the fused system, the AD would detect the excursion at 250s. After what appears to be approximately 100s, 
persistency is established and a measurement delta vector is computed. A fault isolation is then performed, thereby 
isolating the P25 bias. After this identification, the bias can be accommodated by either applying the bias estimate 
(from the isolation process) to cancel the signal, or, (in a dual channel FADEC), by switching to the alternate 
measurement channel (the approach taken here for simplicity). In either event, the bias is effectively removed and 
the tuners return to their pre-biased state.
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5.  CONCLUSIONS

While the Data Fusion program fell short of demonstrating a working information fusion system for the C17-
T1 aircraft, largely because of data acquisition problems, it did provide a research vehicle for establishing a general 
approach and architecture for the incorporation of such a system. Central to the program work was the 
identification and development of several key modules, particularly, the analysis elements. With respect to these 
modules, it was demonstrated that there is a good potential for deriving a viable virtual oil quantity measurement. 
This is particularly important for commercial engine applications where features such as oil consumption rate are 
of interest; however, oil quantity measurements during flight are not available to monitor this feature in real time.

Although not mature, significant progress was made in defining and developing a gaspath AD system. System 
studies yielding a configuration require several regime-dependent detectors. For example, steady-state operation 
and transient acceleration and deceleration all required separate detector models. Separating bleed on and bleed off
operations also resulted in increased accuracy.

Finally, the (algorithm) fusion of the AD and a real time gaspath analysis system (eSTORM) was able to 
demonstrate the (positive) impact of fusing disparate information sources. Although restricted to the gaspath 
because of simulation constraints, it was possible to demonstrate a marked improvement in the classical gaspath 
analysis. In particular, it was demonstrated that measurement bias could be detected, estimated, and accommodated 
so that module performance tracking could proceed without corruption.
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